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1. Introduction

In recent works, three of us have explored the mathematics and physics of ‘super-Landau’

models, which are quantum mechanical models for a charged particle on a homogeneous

superspace, such that the ‘bosonic’ truncation is either Landau’s original model for a

charged particle moving on a plane under the influence of a uniform magnetic field, or

Haldane’s spherical version of it. The former case yields ‘planar’ super-Landau models and

the latter case yields ‘spherical’ super-Landau models; the two are related by a limiting

process in which the sphere becomes a plane as its radius is taken to infinity.

The simplest spherical super-Landau models are those for which the homogeneous su-

perspace has isometry supergroup SU(2|1), and the simplest of these is the ’superspherical’

Landau model for a charged particle on the projective superspace CP (1|1), which is the

complex ’Riemann supersphere’ and can be viewed as the coset superspace SU(2|1)/U(1|1).
In a limit in which only the lowest Landau level (LLL) of this model survives, it describes

a fuzzy Riemann supersphere [1]. The other spherical super-Landau models with SU(2|1)
symmetry are the ‘superflag’ Landau models, for which the homogeneous superspace is

the coset superspace SU(2|1)/[U(1) × U(1)] [2]. In this case there is an additional anti-

commuting variable, and a corresponding ‘fermionic Wess-Zumino’ term with real number
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coefficient M . There is therefore a 1-parameter family of superflag Landau models, and

the M=0 model turns out to be equivalent to the superspherical model.

The quantum theory of the spherical super-Landau models was worked out in [1, 2] and

a number of intriguing properties were uncovered. The spherical models are conceptually

simpler than the planar models because the degeneracies at each Landau level are finite,

but the non-linearity of the configuration space leads to computational complexities. For

this reason, it is useful to study the class of planar super-Landau models obtained as the

planar limit of the spherical super-Landau models; these all have isometry supergroup

ISU(1|1). The planar limit of the superspherical model yields the ‘superplane’ Landau

model, while the planar limit of the superflag Landau models yields the ‘planar-superflag’

Landau models [3], which are parametrized by the real number M , with the M=0 model

being equivalent to the superplane model.

One result of [1 – 3] was that there are ghosts in all Landau levels with N>2M , and

zero-norm states in all levels with N=2M (which is possible when 2M is a non-negative

integer). This result assumes a natural superspace norm, invariant under the superspace

isometries and with respect to which the Hamiltonian is hermitian, and it shows that this

norm is indefinite. This was not unexpected since the classical equations of motion for the

‘fermionic’ variables are (except in the LLL limit) second order in time derivatives, rather

than first order; this typically leads to ghosts in quantum field theory, and in quantum

mechanics [4]. However, more options are available in quantum mechanics.1 In particular,

the possibility of an alternative norm was not addressed in [1 – 3], although it is not difficult

to see that there must exist a positive norm: the hermiticity of the Hamiltonian with

respect to any non-degenerate norm implies that it is both diagonalizable and has real

eigenvalues, and it is therefore manifestly hermitian with respect to the natural positive-

definite norm in the basis in which it is diagonal. However, it is not immediately clear

what the consequences are for the symmetries, nor whether there are further possibilities.

One purpose of this paper is to explore the possibilities for symmetry-preserving norms

that maintain the hermiticity of the Hamiltonian, and thereby to determine whether the

ghosts found previously in super-Landau models can be ‘exorcized’.

In order to simplify the calculations we will restrict ourselves here to the planar super-

Landau models. We address the issue of the uniqueness, or otherwise, of the Hilbert space

norm by adapting the methods of PT -symmetric quantum theory (see [6] for a review)

and ‘bi-orthogonal systems’ (see e.g. [7]). In that context one is given a Hamiltonian that

fails to be hermitian with respect to a ‘naive’ norm and one considers whether it is possible

to deform the norm in such a way that the Hamiltonian becomes hermitian. In our case,

the starting Hamiltonian is hermitian but with respect to an indefinite norm and we need

to modify the norm so that it becomes positive and is such that the Hamiltonian remains

hermitian. The two problems are quite different but, in either case, the formalism is well-

adapted to study the consequences for symmetries of a change of norm. Our conclusion will

be that for the planar superflag there are two possible ISU(1|1) invariant norms, one being

1A recent article [5] shows that even ‘bosonic’ ghosts need not lead to a violation of unitarity in quantum

mechanics.
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the norm used in [1 – 3]. For M<0, it is the ‘other’ possible norm that is both positive and

ISU(1|1) invariant, but zero-norm states appear for M=0 and positivity for M>0 requires

a ‘dynamical’ combination of both possible norms.

The issue of the Hilbert space norm was indirectly brought to our attention by a paper

of Hasebe [8] on an alternative ‘superplane’ Landau model obtained as the planar limit of

a spherical super-Landau model for a particle on the coset superspace OSp(1|2)/U(1) [9].

A feature of OSp(1|2)/U(1), which is also referred to as a ‘supersphere’ by many authors,

is that the ‘fermions’ transform as an SU(2) doublet, which means that they must be

complex because the doublet of SU(2) is pseudo-real rather than real. This feature carries

over to the planar limit, so the ‘superplane’ of Hasebe is a superspace of real dimension

(2|4) in contrast to the (2|2)-dimensional superplane of [3], but it can be interpreted as

a superspace of ‘pseudo-real’ dimension (2|2) and it appears that the distinction is not

relevant to the quantum theory. A further difference between [3] and [8] is that wave-

functions were interpreted in [3] as superfields (functions of definite Grassmann parity),

and this leads to a ‘Hilbert’ supervector space rather than to a standard vector space. In

contrast, the coefficients in the ζ-expansion of the wave-functions in [8] are all standard

complex functions, and the norm for the Hilbert space they span is the positive-definite one.

A remarkable feature of this choice is that the quantum theory can then be interpreted as a

model of supersymmetric quantum mechanics (SQM); specifically, it has an unbroken N=2

‘worldline’ supersymmetry,2 the SQM ground states forming the lowest Landau level [8].

The emergence of worldline supersymmetry is remarkable because it has no obvious

connection to the ‘internal’ supersymmetry that underlies the model’s construction, and

a major purpose of this paper is to elucidate its origin. As we shall see, the transition

from the indefinite norm to the positive-definite one leads to a change in the conjugation

properties of ‘fermionic’ operators, which is effected via a ‘shift’ operator, and this leads to

the Hamiltonian appearing as a central charge in the ISU(1|1) algebra. In addition, the

shift operator turns out to be the supersymmetry charge of the worldline supersymmetry

algebra. A remarkable feature of the worldline supersymmetry generators is that they

have a Sugawara-type realization in terms of the original ISU(1|1) generators, although

this feature is absent in a new ‘natural’ basis for which the symmetry algebra is manifestly

the direct sum of the Lie superalgebra of ISU(1|1) and the N=2 worldline supersymmetry

superalgebra.

The status of worldline supersymmetry is considerably clarified by consideration of the

planar superflag Landau models. The additional anticommuting variable of these models

was identified in [3] as a Nambu-Goldstone variable for the ISU(1|1) supersymmetry. How-

ever, this variable is actually ISU(1|1)-inert in the ‘natural’ basis, and instead transforms

inhomogeneously under worldline supersymmetry (at least for M ≤ 0, which we assume

for the purposes of this introduction); it is therefore a Nambu-Goldstone variable for a

spontaneously broken N=2 worldline supersymmetry! In the quantum theory, this new

anticommuting variable becomes the complex Grassmann-odd coordinate of worldline su-

2Here we adopt the convention that N is the number of real supercharges, in contrast to [8, 9], and [10],

where N is the number of complex supercharges.
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perspace, and the wavefunction becomes a worldline superfield, with an expansion in terms

of ISU(1|1) superfields.

The equivalence of the M=0 planar superflag model to the superplane model was

proved in [3] for the indefinite norm, but we show here that it remains true for the new,

positive, norm. This equivalence means that the worldline supersymmetry that is spon-

taneously broken for M<0 is restored when M=0. Classically, this is because ξ becomes

a pure-gauge variable in the classical ground state when M = 0. Quantum mechanically,

the worldline supersymmetry restoration occurs because half the ground states have zero

norm when M=0, and the physical ground states (defined as equivalence classes of states

modulo the addition of a zero-norm state) are annihilated by the worldline supersymmetry

operators. In other words, supersymmetry is restored at M=0 by virtue of a discontinuity

in the spectrum at M=0. This is rather different from the usual state of affairs for a family

of SQM models in which the spectrum changes continuously with the parameter, so that

supersymmetry can be broken at some values of the parameter only if the Witten index

vanishes [10]. Here, it is not the energy eigenvalues that depend on the parameter but the

norms of the states, and this allows a discontinuity in the spectrum because the norms of

some ground states can go to zero.

2. Preliminaries

It is useful to discuss first some of the general structures to be encountered later in specific

models. The quantum systems of interest possess inner products which, while naturally

defined, are not positive definite. Therefore, let us assume that there exists a complete

system of energy eigenvectors |fA〉 for the Hamiltonian, H, which obey

〈fA|fB〉 = (−)g(A) δAB , (2.1)

where g (A) is the grading3

g (A) =

{

0 : A = a

1 : A = α
. (2.2)

The subset of indices A = a indicates positive norm states, while the subset A = α indicates

negative norm states, for all eigenvectors. In fact (2.1) defines a system of linear functionals

FA (fB) = (−)g(A) δAB , (2.3)

which upon a trivial redefinition can be cast in the standard biorthogonal form [7] (see

also [11 – 13]).

The operation of naive hermitian conjugation (†) will be taken with respect to the

non-positive-definite inner product. For all the models of interest here, H will be naively

hermitian with respect to this inner product:

H = H† . (2.4)

3This should not be confused with the grading associated to Grassmann parity, with anticommuting

variables being Grassmann-odd.
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To define an improved inner product, and obtain only positive norms, we introduce a

‘metric operator’ G that acts on the eigenvectors |fA〉 to give

G |fA〉 ≡ |GfA〉 = (−)g(A) |fA〉 , G = G† . (2.5)

Thus, H commutes with the metric, essentially by definition of the grading. The new inner

product is then defined by the following formula

〈〈fA|fB〉〉 ≡ 〈GfA|fB〉 = δAB . (2.6)

The ‘improved’ hermitian conjugate O‡, with respect to 〈〈· · · 〉〉, of any operator O, is given

by

〈GfA |O| fB〉 =
〈

O†GfA|fB

〉

=
〈

G
(

G−1O†G
)

fA|fB

〉

. (2.7)

That is to say,

〈〈fA |O| fB〉〉 =
〈〈

O‡fA|fB

〉〉

, (2.8)

where

O‡ ≡ G−1O†G = O† + SO . (2.9)

Here we have introduced a “shift operator” for a given O, as defined by

SO ≡ G−1
[

O†, G
]

. (2.10)

Operators which do not commute with G will have O‡ 6= O†.

Note that G = G† implies
(

O‡
)‡

= O , so that the new hermitian conjugation procedure

closes in the familiar way. Correspondingly, the shift operators have the simple, useful

conjugation property

SO
‡ = −SO

† . (2.11)

As a consequence, the combination

Õ ≡ O +
1

2
S†
O (2.12)

has a conjugation with respect to the metric that coincides with its naive hermitian con-

jugate

Õ‡ = Õ† . (2.13)

We are going to extensively use all of these properties, as well as the following proposition

[Lemma] Since [G,H] = 0 , the Hamiltonian H is hermitian in both inner products, H =

H† = H‡ . Moreover, if the operator O is a constant of motion, then the corresponding shift

operator is also a constant of motion. Indeed, from [O,H] = 0 it follows that
[

O†,H
]

= 0

and
[

O‡,H
]

= 0 . This is a signal that the algebra of operators which are in involution

with the Hamiltonian may be larger than originally assumed: the system may have some

‘hidden’ symmetries.
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3. Fermionic Landau model

The fermionic Landau model [8, 3] has the Lagrangian

Lf = ζ̇ ˙̄ζ − iκ
(

ζ̇ ζ̄ + ˙̄ζζ
)

, (3.1)

where κ is a real positive constant, ζ(t) is a complex anticommuting variable with complex

conjugate ζ̄(t), and the overdot indicates its derivative with respect to the time parameter

t. The equivalent phase space Lagrangian is

L̃f = −iζ̇π − i ˙̄ζπ̄ − Hf , Hf = (π̄ − κζ)
(

π − κζ̄
)

, (3.2)

where π (π̄) is the momentum conjugate to ζ (ζ̄). To quantize, we make the replacements

π → ∂ζ , π̄ → ∂ζ̄ , (3.3)

where the Grassmann-odd derivatives should be understood as left derivatives. With a

standard operator ordering prescription, the quantum Hamiltonian is

Hf =
1

2

[

α,α†
]

= −α†α − κ , (3.4)

where

α =
(

∂ζ̄ − κζ
)

, α† =
(

∂ζ − κζ̄
)

. (3.5)

These operators satisfy the anticommutation relations
{

α,α†
}

= −2κ . (3.6)

The quantum Noether charges generating translations and phase rotation of the complex

Grassmann plane parametrized by ζ are the differential operators

Π = ∂ζ + κζ̄ , Π† = ∂ζ̄ + κζ , F = ζ∂ζ − ζ̄∂ζ̄ . (3.7)

These span an ‘internal’ superalgebra for which the non-zero (anti)commutators are

{Π,Π†} = 2κ , [F,Π] = −Π , [F,Π†] = Π† . (3.8)

It is straightforward to check that these generators commute with the Hamiltonian (3.4).

Note that the Hamiltonian can be written as

Hf = Π†Π − 2κF − κ , (3.9)

which implies that it belongs to the enveloping algebra of the superalgebra defined by the

relations (3.8).

A general wavefunction ψ(ζ, ζ̄) is a function of ζ and ζ̄, which implies a total of four

states. There are two ground states of energy −κ, with wavefunction ψ(0) annihilated by

α, and two excited states of energy κ, with wavefunction ψ(1) annihilated by α†. These

energy eigenfunctions take the form

ψ(0) = e−κζζ̄ ψ0 (ζ) , ψ(1) = eκζζ̄ ψ1

(

ζ̄
)

, (3.10)
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for analytic function ψ0 and anti-analytic function ψ1:

ψ0 = A0 + ζ B0 , ψ1 = A1 + ζ̄ B1 . (3.11)

The 2-vectors (A0 , B0) , (A1 , B1) form two irreducible representations of the supertrans-

lation group defined above. Its generators have the following realization on ψ0: Π0 =

∂ζ ,Π†
0 = 2κζ , F0 = ζ∂ζ .

Now we must choose an inner product. There are two obvious ways to proceed and

each is instructive. We consider them in turn.

3.1 Superspace approach

One natural choice of inner product is

〈

φ
∣

∣ψ
〉

=

∫

dζdζ̄ φ
(

ζ, ζ̄
)

ψ
(

ζ, ζ̄
)

. (3.12)

This has the property that α and α† are hermitian conjugates, when viewed as operators

on wavefunctions, which guarantees the hermiticity of Hf . In turn, this guarantees the

orthogonality of the energy eigenstates ψ(0) and ψ(1) . However, the product (3.12) also

implies a negative norm for excited states. Indeed, one finds that

〈

ψ(0)
∣

∣ψ(0)
〉

= 2κĀ0A0 + B̄0B0 ,
〈

ψ(1)
∣

∣ψ(1)
〉

= −2κĀ1A1 − B̄1B1 . (3.13)

Therefore, with respect to the inner product (3.12) for which the operators α and α† are

conjugate to each other and Hf is manifestly hermitian, the norm is not positive definite.4

We can circumvent this difficulty by redefining the dual state vectors. Let us choose

the ‘metric’ operator to be

G = −κ−1Hf . (3.14)

Note that G = G†, as required, and that

G
(

ψ(0) + ψ(1)
)

= ψ(0) − ψ(1) , (3.15)

which implies that the improved inner product is positive definite. As G commutes with

the Hamiltonian in this example, there are no shifts introduced for the hermitian conju-

gates of any of the symmetry generators, and hence no change in the (anti)commutation

relations (3.8). However, the hermitian conjugation properties of non-conserved operators

can change. In particular, we have

α‡ = −α† . (3.16)

The operators α and α‡ have the commutation relations of fermionic annihilation and

creation operators,
{

α,α‡
}

= 2κ , (3.17)

4Note that this is true irrespective of whether the A and B coefficients are both ordinary complex

numbers or complex supernumbers with Grassmann-odd products AB.

– 7 –



J
H
E
P
0
4
(
2
0
0
7
)
0
2
0

and the Hamiltonian is formally the same5 as the hamiltonian of a fermionic harmonic

oscillator:

Hf = α‡α − κ . (3.18)

Note that the conjugation properties of the coordinates and momenta are altered:

ζ‡ =
1

κ
∂ζ ,

(

ζ̄
)‡

=
1

κ
∂ζ̄ , (3.19)

and correspondingly

(∂ζ)
‡ = κζ ,

(

∂ζ̄

)‡
= κζ̄ . (3.20)

That is, under the new conjugation the momentum canonically conjugate to a coordinate

is also the coordinate’s hermitian conjugate!

3.2 Matrix approach

A general wave function can be written as

ψ
(

ζ, ζ̄
)

= A + ζB + ζ̄C + ζ̄ζD , (3.21)

for constant complex coefficients A,B, C and D. In principle, these constants could be gen-

eral super-numbers but we again suppose either that they are ordinary complex numbers,

in which case the Hilbert space is C
4, or that ψ is a superfield (i.e. has definite Grassmann

parity) in which case the ‘Hilbert’ space is the supervector space C
(2|2). In either case, the

action of Hf is given by

Hf ψ
(

ζ, ζ̄
)

= −D − κζB + κζ̄C − κ2ζ̄ζA . (3.22)

Clearly, any procedure involving this model can be stated directly in terms of 4×4 (su-

per)matrices. Let us associate to the superfield wavefunction ψ the column (super)vector6

~ψ =











A
D
B
C











. (3.23)

Independently of the grading assigned to the coefficients A,B, C,D, the differential operator

Hf is then equivalent to the (super)matrix

H =











−1

−κ2

−κ

κ











. (3.24)

5The difference is the doublet degeneracy of the two energy eigenstates, which is the fermionic version

of the infinite degeneracy of the energy levels of the bosonic Landau model. This doublet degeneracy is

related to the symmetry under supertranslations, with algebra (3.7), just as the degeneracy in the bosonic

Landau model is related to the invariance under the ‘magnetic translations’ defined in (4.11).
6Note the non-alphabetic ordering.
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Because of its block-diagonal form, it is manifest that this may be viewed either as a matrix

or as a supermatrix. In either case it is non-hermitian with respect to the usual positive

definite inner product (for which H† = HT), but it is hermitian with respect to the metric

G =











κ2

1

1

1











, (3.25)

in the sense that GH = H†G; i.e. it is ‘quasi-hermitian’ [14].

For any κ 6= 0, the matrix H can be diagonalized by a non-unitary similarity transfor-

mation, H = S−1HDS, and the construction of a positive definite inner product in terms of

the usual orthonormal basis of the transformed system is then straightforward. The inverse

similarity transformation then leads from this orthonormal basis back to a bi-orthogonal

system (see the classic text [11]) which corresponds to the previous polynomial basis and

an appropriate set of dual polynomials. That is to say, in terms of the original basis

underlying (3.23), a suitable metric is G = S†S, where for example

S =











κ/
√

2 1/
√

2

−κ/
√

2 1/
√

2

1

1











. (3.26)

The matrix approach is thus equivalent to the superfield approach. However, it is conve-

nient only for finite-dimensional matrices, so we revert to the superspace approach in what

follows.

4. The superplane model

The Lagrangian of the superplane model [8, 3] is the sum L = Lf + Lb of the Lagrangian

(3.1) of the fermionic Landau model and the Lagrangian

Lb = |ż|2 − iκ (żz̄ − ˙̄zz) , (4.1)

of Landau’s original ‘bosonic’ model, where 2κ can now be identified as the (positive) value

of a uniform magnetic field. The phase space Lagrangian is

L̃ =
(

żp − iζ̇π
)

+ c.c. − Hclass , (4.2)

where

Hclass = |p + iκz̄|2 + (π̄ − κζ)
(

π − κζ̄
)

. (4.3)

For a standard operator ordering prescription, the corresponding quantum Hamiltonian

operator is

H = ∂ζ̄∂ζ − ∂z∂z̄ + κ
(

z̄∂z̄ + ζ̄∂ζ̄ − z∂z − ζ∂ζ

)

+ κ2
(

zz̄ + ζζ̄
)

. (4.4)
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Introducing the boson creation and annihilation operators

a = i (∂z̄ + κz) , a† = i (∂z − κz̄) ,
[

a, a†
]

= 2κ , (4.5)

and recalling the definition (3.5) of the fermion creation and annihilation operators, we

find that

H = a†a − α†α . (4.6)

Note the cancellation of the zero point energies.

The ground state wavefunction ψ(0) for the lowest Landau level is annihilated by both

a and α and hence takes the form

ψ(0) = e−κK2 ψ(0)
an (z, ζ) , (4.7)

for analytic function ψ
(0)
an . Here we introduced the notation (see [3])

K2 = |z|2 + ζζ̄ . (4.8)

For each ground state, there are two excited states at the first Landau level, with wave-

functions given by the action of either a† or α‡ on the ground-state wavefunction. The

wavefunctions at higher Landau levels (with the energy EN = 2κN) are obtained similarly

and have the same degeneracy. Thus the Nth level Hilbert space has a wavefunction of

the form

ψ(N) =
(

−ia†
)N

e−κK2ψ
(N)
+ (z, ζ) − N

(

−ia†
)N−1

α†e−κK2ψ
(N)
− (z, ζ) , (4.9)

where ψ±(z, ζ) are two analytic functions of z and ζ, and the factors of i and N are

included for convenience of comparison with our later results. We may write these analytic

wavefunctions as

ψ
(N)
± (z, ζ) = A

(N)
± (z) + ζB

(N)
± (z) , (4.10)

where the A and B coefficients are now analytic functions of z; a four-fold degeneracy of

the excited states, relative to the bosonic Landau model, is now manifest.

The Hamiltonian commutes with the ‘magnetic translation’ operators

P = −i (∂z + κz̄) , P † = −i (∂z̄ − κz) (4.11)

and with the supermagnetic translation operators (Π,Π†) defined in (3.7). The non-zero

(anti)commu- tation relations of these supertranslation operators are

[P,P †] = 2κ , {Π†,Π} = 2κ . (4.12)

The Hamiltonian also commutes with the operators:

Q = z∂ζ − ζ̄∂z̄ , Q† = z̄∂ζ̄ + ζ∂z , (4.13)

and

C = z∂z + ζ∂ζ − z̄∂z̄ − ζ̄∂ζ̄ . (4.14)
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These operators span the algebra of SU(1|1), for which the only non-zero (anti)commu-

tation relation is

{Q,Q†} = C . (4.15)

Including the operators P, P †,Π and Π† leads to the semi-direct product superalgebra

ISU(1|1) . In particular,

[Q,P ] = iΠ , {Q†,Π} = iP , [C,P ] = −P , [C,Π] = −Π . (4.16)

For the Hamiltonian (4.6) there exists a representation in terms of the ISU(1|1) charges,

analogous to (3.9):

H = P ‡P + Π‡Π − 2κC . (4.17)

4.1 Norm and modified ISU(1|1) algebra

The natural ISU(1|1)-invariant inner product is such that states at different levels are

orthogonal and states within the same level have inner product

〈

φ
∣

∣ψ
〉

=

∫

dµ φ
(

z, z̄; ζ, ζ̄
)

ψ
(

z, z̄; ζ, ζ̄
)

, (4.18)

where dµ is the ISU(1|1)-invariant superspace measure

dµ = dzdz̄dζdζ̄ . (4.19)

As in the purely fermionic case, and for the same reason, this leads to negative norm states.

Specifically, one finds that

〈ψ(N)
∣

∣ψ(N)〉 = (2κ)NN !

[

−N
∣

∣

∣

∣

∣

∣
ψ

(N)
−

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
ψ

(N)
+

∣

∣

∣

∣

∣

∣

2
]

, (4.20)

where we have defined

||φan||2 ≡
∫

dµ e−2κK2 φan φan (4.21)

for any analytic function, or superfield, φan(z, ζ). A computation shows that7

∣

∣

∣

∣

∣

∣
ψ

(N)
±

∣

∣

∣

∣

∣

∣

2
=

∫

dzdz̄ e−2κ|z|2
(

2κA
(N)
± (z)A

(N)
± (z) + B

(N)
± (z)B

(N)
± (z)

)

, (4.22)

so the minus sign in (4.20) implies an indefinite norm. This problem is circumvented exactly

as before, and with the same metric operator G = −κ−1Hf , which we may write as

G =
1

κ

[

∂ζ∂ζ̄ + κ2ζ̄ζ + κ
(

ζ∂ζ − ζ̄∂ζ̄

)]

. (4.23)

It is evident that G commutes with H. It is also easy to verify that G commutes with

the operators a and a†, but not with α and α†, and this leads to the modified hermitian

conjugates

α‡ = −α† , (4.24)

7Recall that either the A or the B coefficient function will be Grassmann odd if the wavefunction is a

superfield.
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as in the fermionic Landau model. The Hamiltonian may now be written in the manifestly

positive form

H = a†a + α‡α . (4.25)

The metric operator G commutes with all the bosonic symmetry generators of

ISU(1|1), and the fermionic generators Π and Π†, which therefore all have unchanged

hermitian conjugates. However G does not commute with Q, and this leads to the modi-

fied hermitian conjugate

Q‡ = Q† − i

κ
S , (4.26)

where the shift operator is

S = i
(

∂z∂ζ̄ + κ2z̄ζ − κz̄∂ζ̄ − κζ∂z

)

. (4.27)

As explained in section 2, it is convenient to introduce the new operator

Q̃ = Q − i

2κ
S‡ , (4.28)

since this operator commutes with G and therefore has the property that Q̃‡ = Q̃†. We

now have
{

Q̃, Q̃†
}

= C̃ , (4.29)

where

C̃ = C +
1

2κ
H . (4.30)

We now have two commuting symmetries, one an ISU(1|1) symmetry with the modified

charges (P,Π, Q̃;P †,Π†, Q̃†; C̃), and the other a worldline supersymmetry algebra with

charges (S, S‡;H). The generator C̃ differs from the original C by the term proportional

to H, which commutes with all symmetry generators and so can be thought of as a central

charge. Thus the new ISU(1|1) algebra can be interpreted as a central extension of the

original ISU(1|1) algebra.

4.2 Worldline supersymmetry

As explained in section 2, the hermiticity of the Hamiltonian with respect to both the

original and the modified norm implies that both S and S‡ are constants of motion. These

operators can be written as

S = a†α , S‡ = aα‡ , (4.31)

and they have the anticommutation relation

{S, S‡} = 2κH , {S, S} = 0 = {S‡, S‡} , (4.32)

which is an N=2 worldline supersymmetry algebra. Note also that

{S, Q̃} = 0 , {S, Q̃†} = 0 . (4.33)

The worldline supersymmetry is unbroken because the ground state is annihilated by both

S and S‡. The ground state is a singlet of the N=2 worldline supersymmetry, but still
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forms a non-trivial multiplet of ISU(1|1), which explains its doublet degeneracy. All higher

N states form non-trivial multiplets of N=2 worldline supersymmetry consisting of two

irreducible ISU(1|1) multiplets. This implies the four-fold degeneracy of these states.8

Classically, the supersymmetry charges generate transformations of the phase-space

variables. After elimination of the momentum variables one finds that the infinitesimal

transformation generated by εS + ε̄S‡, for complex anticommuting parameter ε, is

δz = εζ̇ , δζ = −żε̄ . (4.34)

It is readily verified that the configuration space Lagrangian is invariant under these trans-

formations, and that their algebra closes, on-shell, to the worldline supersymmetry algebra.

This classical supersymmetry is unbroken by the classical ground state solutions, for which

both z and ζ are constant, as expected from the fact that worldline supersymmetry is un-

broken quantum mechanically. The worldline supersymmetry is quite remarkable, taking

into account the unconventional form of the above transformations; conventionally, z would

vary into some fermionic field of the proper dimension, not into its time derivative. This

unconventional form means that the commutator on z and ζ involves z̈ and ζ̈ rather than

ż and ζ̇; but z̈ and ż are related by the equations of motion, as are ζ̈ and ζ̇, this being

a characteristic feature of Landau models. For this reason, the on-shell closure of (4.34)

involves κ, so the N=2 supersymmetry is made possible by the WZ terms with non-zero

coefficient κ.

Although worldline supersymmetry has emerged as an ‘accidental’ symmetry in the

sense that it played no role in the construction of the model, there is another sense in

which it is ‘almost’ built into the construction. This follows from the observation that the

worldline supersymmetry generators belong to the enveloping algebra of ISU(1|1), as is

shown by the Sugawara-type representation

S = 2iκQ‡ + PΠ‡ , S‡ = −2iκQ + P ‡Π (4.35)

and (4.17). The anticommutation relations of (4.32) are now a direct consequence of the

ISU(1|1) (anti)commutation relations of (4.12), (4.15), (4.16).

It may appear from this result that worldline supersymmetry is an automatic conse-

quence of ISU(1|1) symmetry, but this is not quite true. Suppose that we try to similarly

define supercharges S̃ and S̃‡ in terms of the modified ISU(1|1) generators. We then have

S̃ = 2iκQ̃‡ + PΠ‡ , S̃‡ = −2iκQ̃ + P ‡Π (4.36)

and

H̃ = P ‡P + Π‡Π − 2κC̃ . (4.37)

However, these charges are identically zero, as a consequence of the further Sugawara-type

relations9

Q̃ = − i

2κ
P †Π , Q̃† =

i

2κ
PΠ† , (4.38)

8Of course, these degeneracies should be understood as relative to the bosonic Landau model.
9These relations show that the modified ISU(1|1) supersymmetry belongs to the enveloping algebra of

the superplane translation algebra.
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and

C̃ =
1

2κ

[

P ‡P + Π‡Π
]

. (4.39)

Thus, worldline supersymmetry is not an automatic consequence of ISU(1|1) invari-

ance, and this was the reason for the qualification ‘almost’. In fact, it should be obvious

that the Sugawara construction cannot yield anything new in a ‘natural’ basis for the

charges which makes manifest that the symmetry group is the direct product of ISU(1|1)
and worldline supersymmetry. So the apparently miraculous construction of the worldline

supersymmetry algebra from the ISU(1|1) algebra is really just a consequence of the fact

that we did not initially obtain the generators in their natural basis.

In order to better understand the origin of worldline supersymmetry, we now turn to

the planar superflag models.

5. The planar superflag model

The superflag Landau model [2] describes a charged particle on the coset superspace

SU(2|1)/[U(1) × U(1)]. One of the two Wess-Zumino (WZ) terms associated with the

U(1) × U(1) group is the Lorentz coupling to a uniform magnetic field of strength 2κ ,

where κ can be identified as the constant already introduced in the previous sections. The

second WZ term is a purely ‘fermionic’ one with constant coefficient M . The details may

be found in [2]; here we are concerned with the planar limit, in which one finds the following

ISU(1|1)-invariant Lagrangian [3]:

L =
(

1 + ξ̄ξ
)

|ż|2 +
(

ξ̄ ˙̄zζ̇ − ξż ˙̄ζ
)

+ ξ̄ξζ̇ ˙̄ζ

− iκ
(

żz̄ − ˙̄zz + ζ̇ ζ̄ + ˙̄ζζ
)

+ iM
(

ξ̄ξ̇ + ξ ˙̄ξ
)

. (5.1)

Notice that ξ is auxiliary when M=0; its elimination returns us to the superplane La-

grangian10 so we now have a one-parameter deformation of the superplane Landau model

that both preserves the ISU(1|1) symmetry and retains the property that the bosonic

truncation yields Landau’s original model. The new variable ξ was interpreted in [3] as

a Nambu-Goldstone variable associated with the spontaneous breaking of the ISU(1|1)
‘supersymmetry’, generated by the Noether charge Q. However, we shall see (at least for

M<0) that its interpretation in the quantum theory with positive norm is as a Nambu-

Goldstone variable for the spontaneous breakdown of an N=2 worldline supersymmetry.

It will be instructive to consider the classical theory before turning to the quantum

theory. Introducing the momentum variables (p, π) conjugate to (z, ζ), we can express the

Lagrangian in the alternative form11

L =
{[

żp − iζ̇π − iMξ̇ξ̄
]

+ λϕ
}

+ c.c − Hclass , (5.2)

10Assuming that ż 6= 0; this is a subtlety dealt with in [3], where the quantum equivalence of the M=0

planar superflag model to the superplane model was established.
11This is essentially eq. (3.7) of [3] after using the phase space constraint ϕξ ≈ 0 to eliminate the

momentum variable χ conjugate to ξ, but with p̃ of that reference written here as p.

– 14 –



J
H
E
P
0
4
(
2
0
0
7
)
0
2
0

where

Hclass =
(

1 − ξ̄ξ
)

|p + iκz̄|2 (5.3)

is the classical Hamiltonian, and λ is a Lagrange multiplier for the constraint ϕ ≈ 0, where

ϕ = π − κζ̄ + iξ̄ (p + iκz̄) . (5.4)

If this constraint is used to eliminate π, we get a Lagrangian in terms of the complex

variables (z, ζ, ξ, p), for which the Euler-Lagrange equations are equivalent to

ż =

(

1 +
i

2κ
ξ̄ξ̇

)

(p̄ − iκz) , ṗ = iκ ˙̄z ,

ζ̇ = −
[

ξ +
i

2κ
ξ̇
(

1 − ξ̄ξ
)

]

(p̄ − iκz) , (5.5)

and

[Hclass − 4κM ] ξ̇ = 0 . (5.6)

This last equation shows that ξ̇ = 0 , except when the energy equals 4κM . This is never

the case when M<0, so the equations of motion for M<0 are equivalent to

ż = (p̄ − iκz) , ṗ = iκ ˙̄z , (5.7)

and

ζ̇ = −ξż , ξ̇ = 0 . (5.8)

These equations imply the superplane Landau model equations of motion

z̈ = −2iκż , ζ̈ = −2iκζ̇ . (5.9)

However, whereas the initial conditions for the superplane model are the values at a

given time of (z, ż, ζ, ζ̇) , the initial conditions for the equations of the M<0 planar superflag

model are the values of (z, ż, ζ, ξ) . These are equivalent as long as ż 6= 0 , because then

ξ = −ζ̇/ż but they are inequivalent at ż = 0 . Specifically, ż = 0 implies ζ̇ = 0 for the

planar superflag model, but ξ is then undetermined. This implies that ξ is an independent,

albeit constant, variable in a classical ground state, for which Hclass = 0 . This is also true

for M = 0 (where ξ is auxiliary for ż 6= 0) but in this case (i) ξ need not be constant

because (5.6) is an identity when Hclass ∼ |ż|2 = 0 , and (ii) ξ(t) can be ‘gauged away’ by a

fermionic gauge invariance, as shown in [3] (where it was also shown that a similar gauge

invariance arises when 2M is any non-negative integer). The significance of these facts

will become apparent when we discuss worldline supersymmetry, but let us stress here the

independence of the classical physics on M as long as M<0 . As we should expect, we will

find that the same is true of the quantum theory.
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5.1 Quantum theory

The quantization of the planar superflag model is complicated by the phase-space con-

straint. In particular, the classical Hamiltonian Hclass does not have weakly vanishing

Poisson brackets with the constraint function ϕ and its complex conjugate ϕ̄. This prob-

lem was dealt with in [3] by a change of variables but it was noted that an alternative

approach would be to consider the modified Hamiltonian12

H ′
class =

(

1 + ξ̄ξ
) ∣

∣p + iκz̄ + iξ
(

π − κζ̄
)∣

∣

2
, (5.10)

which is weakly equal to Hclass and has weakly vanishing Poisson brackets with both ϕ and

ϕ̄. This alternative approach is much more convenient for present purposes. The results

obtained in this way are of course equivalent to those of [3], but the wavefunctions are now

functions of (z, ζ, ξ). Following [3], we define

K1 = 1 + ξ̄ξ (5.11)

and introduce the ‘shifted’ z variable

zsh = z + ξ̄ζ , z̄sh = z̄ − ξζ̄ . (5.12)

We may now quantize without constraint provided that we restrict to ‘physical’ wavefunc-

tions, which take the form

Ψ = KM
1 e−κK2Ψch (z, z̄sh, ζ, ξ) , (5.13)

where Ψch is a ‘chiral’ wavefunction that depends on ζ̄ only through z̄sh, and K2 was

defined in (4.8); we refer to [3] for details. The Hamiltonian operator acting on these

wavefunctions can be written as

H = â†â , (5.14)

where the ‘non-linear’ annihilation and creation operators

â = i
√

K1

(

∂z̄ + κ zsh − ξ̄∂ζ̄

)

, â† = i
√

K1 (∂z − κ z̄sh − ξ∂ζ) , (5.15)

have the same commutation relation as for the bosonic Landau model:
[

â, â†
]

= 2κ . (5.16)

In writing the Hamiltonian operator as (5.14) we are resolving the operator ordering am-

biguity by a ‘normal ordering’ prescription that differs from the ‘harmonic oscillator’ pre-

scription that we used for the bosonic Landau model (and in [3]). As a consequence, H

has eigenvalues 2κN , where N is a non-negative integer, exactly as for the superplane

Landau model. In the physical energy eigenfunctions at level N the chiral wavefunction is

expressed through an analytic function of (z, ζ, ξ) as

Ψ
(N)
ch = ∇̃N

z Ψ(N)
an (z, ζ, ξ) , ∇̃z = ∂z − 2κz̄sh − ξ∂ζ . (5.17)

12This is eq. (3.22) of [3] but with p̃ now written as p.
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It is useful to note that any physical operator O is defined by its action on the energy

eigenfunctions Ψ(N), and if it commutes with the Hamiltonian then this action is determined

by an associated ‘short’ operator Oan acting on the associated analytic wavefunctions Ψ
(N)
an :

OΨ(N) = KM
1 e−κK2∇̃N

z OanΨ(N)
an . (5.18)

In particular, the short form of the Hamiltonian operator is

Han = 2κNan , (5.19)

where Nan is the ‘short’ level number operator defined by

NanΨ(N)
an = N Ψ(N)

an . (5.20)

As the operators generating the ISU(1|1) symmetry commute with the Hamiltonian, they

too may be represented by their short forms, which are

Pan = −i∂z , P †
an = 2iκz ,

Πan = ∂ζ , Π†
an = 2κζ ,

Qan = z∂ζ − ∂ξ , Q†
an = ζ∂z + (Nan − 2M) ξ ,

Can = ζ∂ζ + z∂z + 2M − Nan . (5.21)

One may verify that the associated operators (P,P †; Π,Π†;Q,Q†;C), defined via (5.18),

satisfy the ISU(1|1) (anti)commutation relations (4.12), (4.15) and (4.16), and that

(P †,Π†, Q†) are the hermitian conjugates of (P,Π, Q), with respect to the ISU(1|1)-
invariant inner product:

〈Φ
∣

∣Ψ〉 =

∫

dµ

∫

dξdξ̄ Φ Ψ =

∫

dµ e−2κK2

∫

dξdξ̄ K2M
1 Φch Ψch , (5.22)

where dµ = dzdz̄dζdζ̄ is the measure of (4.19). More generally, for any ‘physical’ operator

O (i.e. one that acts on ‘physical’ wavefunctions), we define O† to be its hermitian conjugate

with respect to this inner product.

When acting on physical states, the Hamiltonian can be written as

H = P ‡P + Π‡Π − 2κC + 4κM , (5.23)

which is analogous to (4.17), with which it coincides for M = 0. It follows that H is

hermitian with respect to the above inner product, and the hermiticity of H implies that

energy eigenfunctions in different Landau levels are orthogonal. The ‘superflag’ norm of

an energy eigenfunction within the Nth level is given by

∣

∣

∣

∣

∣

∣
Ψ(N)

∣

∣

∣

∣

∣

∣

2

sf
≡ 〈Ψ(N)

∣

∣Ψ(N)〉 =

∫

dµ e−2κK2

∫

dξdξ̄ K2M
1

∣

∣

∣
∇̃N

z Ψ(N)
an

∣

∣

∣

2
. (5.24)

We may write

Ψ(N)
an = ψ

(N)
− (z, ζ) + ξ ψ

(N)
+ (z, ζ) (5.25)
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and

∇̃z = D̃z + ξ
(

2κζ̄ − ∂ζ

)

, D̃z = ∂z − 2κz̄ , (5.26)

to get

∇̃NΨ(N)
an = D̃N

z ψ
(N)
− + ξ

[

D̃N
z ψ

(N)
+ + ND̃N−1

z

(

2κζ̄ − ∂ζ

)

ψ
(N)
−

]

. (5.27)

Performing the Berezin integration over ξ and ξ̄ in (5.24) then gives

∣

∣

∣

∣

∣

∣
Ψ(N)

∣

∣

∣

∣

∣

∣

2

sf
=

∫

dµe−2κK2

{

2M
∣

∣

∣
D̃N

z ψ
(N)
−

∣

∣

∣

2
+

∣

∣

∣
D̃(N)

z ψ
(N)
+ +N

(

2κζ̄−∂ζ

)

D̃N−1
z ψ

(N)
−

∣

∣

∣

2
}

. (5.28)

The cross term in the expansion of the final term in this expression is zero, as can be proved

by integration by parts of the term with ∂ζ . We thus have

∣

∣

∣

∣

∣

∣
Ψ(N)

∣

∣

∣

∣

∣

∣

2

sf
=

∫

dµe−2κK2

{

2M
∣

∣

∣
D̃N

z ψ
(N)
−

∣

∣

∣

2
+

∣

∣

∣
D̃(N)

z ψ
(N)
+

∣

∣

∣

2
+N2

∣

∣

∣
(2κζ̄−∂ζ)D̃

N−1
z ψ

(N)
−

∣

∣

∣

2
}

. (5.29)

One may further show by integration by parts that
∫

dµ e−2κK2

∣

∣

∣

(

2κζ̄ − ∂ζ

)

D̃N−1
z ψ

(N)
−

∣

∣

∣

2
= −2κ

∫

dµ e−2κK2

∣

∣

∣
D̃N−1

z ψ
(N)
−

∣

∣

∣

2
(5.30)

and also that
∫

dµ e−2κK2

∣

∣

∣
D̃J

z ψ
(N)
±

∣

∣

∣

2
= (2κ)JJ !

∫

dµ e−2κK2

∣

∣

∣
ψ

(N)
±

∣

∣

∣

2
, (5.31)

for any integer J . We thus find that

∣

∣

∣

∣

∣

∣
Ψ(N)

∣

∣

∣

∣

∣

∣

2

sf
= (2κ)NN !

[

(2M − N)
∣

∣

∣

∣

∣

∣
ψ

(N)
−

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
ψ

(N)
+

∣

∣

∣

∣

∣

∣

2
]

, (5.32)

where the norm on the right hand side is the ‘analytic-function norm’ defined in (4.20) and

given explicitly for the ψ± analytic functions in (4.21), (4.22). This is the result of [3]. With

this norm, there are ghosts in the levels with N>2M , and zero-norm states in the level

with N=2M whenever 2M is a non-negative integer. Note the agreement with (4.20) for

M = 0, which is a consequence of the equivalence of the M = 0 model with the superplane

model for the ‘naive’ superspace norm.

5.2 Positive inner product

The inner product (5.22) is not unique but if we wish to preserve the ISU(1|1) invariance

then any planar superflag metric operator Gsf yielding a new inner product must be a

function only of ξ and ∂ξ. If we also require that Gsf have even Grassmann parity and is

such that G2
sf = 1, then there are only two possibilities for its ‘short’ form: either Gan = 1,

which implies Gsf = 1 (as in [3] and assumed so far), or

Gan = [ξ, ∂ξ ] = −1 + 2ξ∂ξ . (5.33)

One may verify that the corresponding operator Gsf has all the properties required of a

metric operator. Observing that

GanΨ(N)
an = −ψ

(N)
− + ξ ψ

(N)
+ , (5.34)
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we deduce that the new norm of Ψ(N) is

〈〈Ψ(N)
∣

∣Ψ(N)〉〉 ≡ 〈Ψ(N)
∣

∣Gsf Ψ(N)〉 ∝ (N − 2M)
∣

∣

∣

∣

∣

∣
ψ

(N)
−

∣

∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

∣
ψ

(N)
+

∣

∣

∣

∣

∣

∣

2
. (5.35)

All states now have positive norm when M<0. This remains true for M=0 except that

half of the N=0 states, namely those comprised by Ψ
(0)
− , have zero norm. When there are

zero-norm states, the vector (super)space of physical states is the quotient of the space

of all states by the subspace of zero-norm states, which means that any state of zero-

norm corresponds to the zero-vector of the physical space. Thus, zero-norm states do not

contribute to the physical spectrum. Taking this into account, it follows that the M=0

planar superflag model has precisely the same spectrum, including degeneracies, as the

superplane model, and is therefore equivalent to it.

In view of this equivalence, our choice of superflag metric operator Gsf should imply,

for M=0, the superplane metric operator G of (4.23). To verify this, we note that the

superflag wavefunction Ψ(N) has the ξ-expansion

Ψ(N) =
(

− ia†
)N

e−κK2ψ
(N)
− +ξ

[

(

−ia†
)N

e−κK2ψ
(N)
+ −N

(

−ia†
)N−1

α†e−κK2ψ
(N)
−

]

,(5.36)

where a† and α† are the superplane creation operators introduced in (3.5) and (4.5). Noting

that

∂ξΨ
(N) = ψ(N) , (5.37)

where ψ(N) is precisely the superplane energy eigenfunction of (4.9), we see that

∫

dµ

∫

dξdξ̄ Ψ(N) Ψ(N) =

∫

dµ ψ(N) ψ(N) , (5.38)

and hence the ‘naive’ M = 0 superflag norm coincides with the ‘naive’ superplane norm,

as expected. We now observe that

∂ξ

(

GsfΨ(N)
)

= Gψ(N) , (5.39)

from which it follows that the modified planar superflag norm implies the modified norm

introduced earlier for the superplane model.

When M>0 there are negative-norm states for all N<2M , in particular for N=0, but

one can revert to the ‘naive’ norm for these levels, thus ensuring that all states have a

positive-definite (or zero) norm for any value of M . Note that the two norms coincide

when N=2M , which can happen only when 2M is a non-negative integer, and in this

case there are zero-norm states. The M=0 case discussed above is just a special case of

this phenomenon. Taking into account the possibility of zero-norm states, we see that the

spectrum is the same for all M , with the same degeneracy at each Landau level, except

when 2M is a non-negative integer. Every such non-negative integer yields a different

spectrum because half of the states in the N=2M level have zero norm. In what follows

we assume that M<0 so that the metric operator Gsf is given by (5.33); the modification

required for the N<2M states when M>0 will be obvious since the ‘naive’ norm then

applies.
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The only ISU(1|1) generators that fail to commute with Gsf are Q and Q†:

[Gan, Qan] = 2∂ξ ,
[

Gan, Q†
an

]

= 2ξ (Nan − 2M) . (5.40)

This means that all hermitian conjugates are unmodified except for those of Q and Q†.

Following the general procedure, we have

Q‡
an = Gan Q†

an Gan =

(

Q†
an − i

κ
San

)

, (5.41)

(Q†
an)‡ = (Q‡

an)† = Gan Qsh G =

(

Qan +
i

κ
S†

an

)

, (5.42)

whence, using (5.40), the shift operators S and S† are found to be

San = 2iκξ (2M − Nan) , S†
an = −2iκ∂ξ . (5.43)

The shift operators do not commute with G, since

[Gan, San] = 2San , [Gan, S†
an] = −2S†

an , (5.44)

and hence S† is no longer the hermitian conjugate of S. In fact, its hermitian conjugate is

S‡ = −S†, and hence

{San, S‡
an} = 4κ2 (Nan − 2M) . (5.45)

Again following the general procedure, we define ‘improved’ ISU(1|1) supersymmetry

generators

Q̃an = Qan +
i

2κ
S†

an = z∂ζ . (5.46)

As this operator commutes with Gan, we have

Q̃‡
an = Q̃†

an = Q†
an − i

2κ
San = ζ∂z . (5.47)

If we now define the new U(1) generator

C̃an = Can + (Nan − 2M) , (5.48)

which yields precisely the same redefinition as in (4.30), then the new ISU(1|1) generators

are

Pan = −i∂z , P ‡
an = 2iκz ,

Πan = ∂ζ , Π‡
an = 2κζ ,

Q̃an = z∂ζ , Q̃‡
an = ζ∂z ,

C̃an = z∂z + ζ∂ζ . (5.49)

One may verify that these operators obey the (anti)commutation relations of ISU(1|1).
As the ‘analytic’ ISU(1|1) generators now act on functions of (z, ζ) alone, they ev-

idently (anti)commute with San and S‡
an, which act on functions of ξ alone. As a con-

sequence, the variable ξ can no longer be interpreted as a Nambu-Goldstone variable for

broken ISU(1|1) supersymmetry, as it was in [3]. Instead, it can be interpreted as a

Nambu-Goldstone variable for the symmetry generated by S. As we now explain, this is

the generator of a worldline supersymmetry, so the expansion of a wavefunction in ξ is the

(ISU(1|1)-invariant) expansion of a worldline superfield.
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5.3 Worldline supersymmetry revisited

The anticommutation relation (5.45) implies that

{S, S‡} = 2κHsusy , Hsusy = H − 4κM , (5.50)

and one can similarly show that {S, S} = 0 = {S‡, S‡} . It is therefore natural to interpret

S as an N=2 worldline supersymmetry charge, for Hamiltonian Hsusy , but the assumption

that M ≤ 0 is crucial to this interpretation because S‡ is otherwise not the hermitian

conjugate of S with respect to a non-negative norm. Indeed, the anticommutator (5.45)

would, if valid, imply that N ≥ 2M , which would exclude states with N<2M when M>0 .

As noted earlier, we must revert to the G = 1 norm when N<2M , in which case the

anticommutator (5.45), and hence (5.50), is modified. One finds that

{S, S‡} = 2κ|Hsusy| (M>0) . (5.51)

One could attempt to interpret this as a supersymmetry anticommutator with |Hsusy| as a

new Hamiltonian but this would be pointless as it does not imply worldline supersymmetry

of the planar superflag model. For this reason, the planar superflag model has a hidden

worldline supersymmetry only for M ≤ 0, so let us now assume that M≤ 0 .

A standard consequence of (5.50) is that S and S‡ can only annihilate states that are

annihilated by Hsusy, which are eigenstates of H with energy 4κM . Given that Han =

2κNan, for positive κ, and M ≤ 0, such states can exist only when M=0 , in which case

they are zero-energy states. In standard supersymmetric quantum mechanics, all zero-

energy eigenstates must be annihilated by all supersymmetry charges. Our case is slightly

different: a given zero-energy eigenstate need not be annihilated by S, or S‡, but if it is not

then the resulting state has zero norm. This follows from the expressions (5.43) and (5.25),

and the fact that Ψ
(0)
an = ψ

(0)
− has zero norm at M = 0 (see (5.35)). Nevertheless, it is

still true that all physical zero energy states are annihilated by both S and S‡ because the

physical subspace is spanned by equivalence classes of states modulo the addition of a zero-

norm state. The number of these physical ground states is precisely half the total number

of ground states, and hence non-zero, so the worldline supersymmetry is restored at M=0 .

This is expected from the equivalence with the superplane model, for which we know that

the worldline supersymmetry is unbroken. In contrast, there are no supersymmetric ground

states when M<0 , so worldline supersymmetry is spontaneously broken for M<0 .

These quantum results have classical analogs. To see this, we observe that the charges

S and S‡ generate transformations of the phase-space variables that leave invariant the

phase-space form of the classical action, which is given in [3]. After solving the phase-

space constraints and eliminating the momentum variables, one finds the infinitesimal

transformation laws

δz = −εξ
(

ż + ξ̄ζ̇
)

,

δζ = = −
[

(

1 + ξ̄ξ
)

ż + ξ̄ζ̇
]

ε̄ ,

δξ = −2iκ ε̄ , (5.52)
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where ε is the complex anticommuting parameter, with complex conjugate ε̄. The trans-

formations of (z̄, ζ̄ , ξ̄) are obtained by taking the complex conjugate. One may verify that

these transformations leave invariant the classical Lagrangian (5.1), up to a total derivative,

for any value of M , and have the same on-shell closure ∼ 2κ∂t for all relevant variables.

Note that the transformations of (z, ζ) are on-shell equivalent to those of (4.34), and that

they are compatible with the relation ζ̇ = −ξż since δ(−ζ̇/ż) = 2κi ε, on shell.

Although the on-shell relation ζ̇ = −ξż suggests that ξ is a ‘composite’ variable at

ż 6= 0 , it should now be recalled that it becomes an independent variable in a classical

ground state corresponding to ż = 0 , at least when M< 0. Then its inhomogeneous trans-

formation implies that it is a Nambu-Goldstone variable for spontaneously broken worldline

supersymmetry. Thus, classical supersymmetry is spontaneously broken when M<0 . The

M=0 case is different because, as mentioned earlier, ξ can then be ‘gauged away’ in a

classical ground state and the δξ transformation of (5.52) becomes just a particular case

of the corresponding gauge transformation. So classical worldline supersymmetry is un-

broken when M=0 . This of course could be anticipated from the equivalence of the M=0

planar superflag model to the superplane model. The classical physics therefore parallels

the quantum physics: supersymmetry is spontaneously broken for M<0 but restored at

M=0 .

6. Conclusions

Earlier studies of super-Landau models [1 – 3] concluded that these models have ghosts

in all Landau levels but some number of the low-lying ones, as might be expected for a

theory with ‘higher-derivative’ fermion kinetic terms, but this conclusion was grounded on

a particular choice of (super)Hilbert space norm. Here we have investigated the possibility

of other norms consistent with symmetries and hermiticity of the Hamiltonian. We have

found that there is an alternative norm. This alternative norm is positive for the superplane

Landau model, as is implicit in the previous work of Hasebe [8], and hence for the equivalent

M = 0 planar superflag model. The alternative norm is also positive for the M<0 planar

superflag Landau models, while for M>0 the positive norm is a ‘dynamical’ combination

of both possibilities (in the sense that the choice depends on the level, and hence on the

Hamiltonian). Thus, it is always possible to find a positive norm. However, this positive

norm is not always positive-definite because there are zero-norm states when 2M is a non-

negative integer.13 This means that the positive norm cannot always be identified with the

natural positive-definite norm in the basis for which the Hamiltonian is diagonal, so merely

noting the existence of the latter is not sufficient, in general, to ‘exorcize’ the super-Landau

ghosts; the detailed analysis performed here was necessary.

The possibility of modifying the Hilbert space norm in order to convert an apparently

unphysical quantum theory into a physical one is the underlying theme of ‘PT -symmetric’

quantum theory, and a number of methods for investigating these possibilities have been

developed in this context. Here we have taken over these methods, extending them to

13This phenomenon was shown in [3] to be associated with a fermionic gauge-invariance.
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models with anticommuting variables. Apart from the basic point that one may be able

to adjust the (super)Hilbert space norm, via a ‘metric operator’ so as to achieve a positive

inner product, the main consequence of a redefined norm is a redefined notion of hermitian

conjugation. Specifically, operators that do not commute with the metric operator have

hermitian conjugates that do not coincide with the naive conjugate. For the planar super-

Landau models investigated here, we found that the supersymmetry charges have hermitian

conjugates that are shifted, relative to their naive hermitian conjugates, by conserved ‘shift’

operators.

Remarkably, these ‘shift’ operators are worldline supersymmetry charges, analogous to

those noted by Hasebe in his version of the superplane Landau model [8]. Classically, these

charges generate transformations of the variables that leave the Lagrangian invariant, up

to a total derivative, and the classical ground state solution is supersymmetric; this feature

is maintained in the quantum theory, since the quantum ground state is annihilated by the

quantum supersymmetry charges. Although the worldline supersymmetry algebra is the

standard one of supersymmetric quantum mechanics, the form of the supersymmetry trans-

formations is non-standard. It would be interesting to see whether there is a superspace

version of the model that makes manifest the invariance of the classical action.

The ‘hidden’ worldline supersymmetry of planar super-Landau models emerges most

naturally in the more general planar superflag models when M<0 because the additional

anticommuting parameter of these models then has a natural interpretation as the Nambu-

Goldstone variable for a broken worldline supersymmetry. Quantum mechanically, the

worldline supersymmetry is spontaneously broken because the supersymmetry charges fail

to annihilate the ground state. One might be tempted to conclude that the Witten in-

dex is therefore zero and that, as a consequence, the worldline supersymmetry will remain

spontaneously broken for any (non-positive) value of the parameter M (since quantum

corrections to models of supersymmetric quantum mechanics generally raise the energy

of any state that would otherwise ‘accidentally’ have zero energy). However, this conclu-

sion would not be correct; not because quantum corrections fail to raise the energy of an

otherwise zero-energy state but because the spectrum changes discontinuously at M=0

due to the vanishing of the norm of half the lowest Landau level states. Thus, worldline

supersymmetry is restored at M=0 by a novel mechanism.

The discontinuity in the spectrum at M=0 suggests that the Witten index is discontin-

uous too, but the infinite degeneracy of the lowest Landau level in planar Landau models

may instead mean that the index is ill-defined. For this reason, among others, it would

be interesting to know what happens for the spherical super-Landau models, for which

the degeneracies at each level are finite. Of course, the issue arises only if the spherical

super-Landau models also exhibit a ‘hidden’ worldline supersymmetry, and it remains to

be seen whether this is the case.
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